Is it to merely kill weeds? How well does a certain sprayer kill weeds? The size - is bigger necessarily better? Or, do we also need to assess the value of that sprayer against how long it spends in each field? All these questions should be carefully considered when making a large investment into a piece of equipment that drastically affects the yield of your crop(s).
After all, a sprayer is one of your most important asset management tools when maintaining and ensuring your crop health - thus effectively ensuring that you get the most out of your yields - regardless of the crop you're raising. Therefore, I think the answer to the questions above is that we must absolutely consider each question when determining a true Return on Investment (ROI) for a sprayer - regardless of the operation size or scope.
In this write-up we will assess the four questions above. To start, let's dissect each question at a high, strategic level.
How Well Does a Certain Sprayer Kill Weeds?
This is a somewhat loaded question as chemical types, brands, and mix rates are involved. But if your accessory products/equipment, which are used to move the solutions onto the plants are lacking, then your sprayer effectiveness will undoubtedly be lacking, as well. Therefore, we must consider year-end maintenance programs. Boom-end flow rates, line obstructions in accessory products such as strainers and valves. Leaking pump seals, poor shaft alignment, and worn spray tips all factor into the efficiency and productivity of your sprayer. Neglect these important features of your sprayer and your operation, and your crop yields will undoubtedly suffer. So, to answer the question outlined in the opening paragraph - your accessory products, that are used to help move solutions, - are just as important to your operation as the sprayer itself.
Year-End Maintenance
It is necessary that a season-end maintenance program is followed to ensure your operation sees success in the ensuing season. Follow our recommended winterization process. Hoses, pumps, motors/engines, valves, strainers, and spray tips should all be inspected to help create a post-season inventory/repair list, in preparation of the upcoming season.
Spray Tip Selection
Have the proper spray tips been selected for the job(s)? Consult your local agronomist for specific details on the product(s) you will be spraying for the upcoming season. When spraying Dicamba products, only specific spray tips are approved for each product - and at specific pressure ranges. You can read another post related to Dicamba. Undoubtedly, always check the label of the product you are spraying to ensure you are spraying "on label". You can have all bases covered in preparation for an upcoming season. However, if you choose incorrectly on spray tips - or size your spray tip orifices incorrectly based upon the rates you intend to apply - the consequences could be catastrophic to your operation - or your neighbors' operations. Here is a tip sizing tool from TeeJet.
Sprayer Size
Does bigger necessarily mean better? It depends. If you're out in western Nebraska and have straight runs for a mile plus, then you may want to consider 120-foot booms with auto steer functionality. However, if you're in Western Iowa and you have many fields that are 75 acres or less, you probably want to opt into a smaller, more agile spray package. Regardless of your choice, one question should drive your purchasing decision - what is the potential ROI?
Speed and Efficiency
How long does it take to spray each field and how many acres do you anticipate covering daily? This should be one of the largest focal points when assessing your operation. Don't focus on non-productive time in an operational day (i.e. travel from field to field, rinse-out, rain/wind delays). These are variables that we have little to no control over.
However, a large area in which we do have control over is nursing, or fill, times. If you can cut your fill times, regarding both fuel and chemical, how much more productive can you make your operation? Let's look at some products that can help you achieve this task. First, let's look at a study done by Praxidyn's Doug Applegate, regarding average sprayer price in comparison with cost per acre/hour. The numbers displayed reflect average prices/costs from various suppliers/operators in a regional area in Western Iowa.
Conclusions:
Slower loading times increase the cost per acre/hour of productivity. Increased cost ranges from 26 to 42 percent.
Spending 10% more for larger capacity/coverage in a sprayer will increase productivity roughly 8%.
Spending 7% more for an automated mixing system can increase productivity by 20% to 30%.
Smaller sprayers are actually more cost effective for their capacity.
The main takeaway here is that, in general, an operation can lower operating costs by, roughly, 20%. Let me repeat….20%. And by simply shaving off 10 minutes from fill times. It's important to note, as the sprayer size increases, the cost savings are reduced. For instance, a sprayer with a 600-gallon tank and 90-foot boom can effectively realize over 29% savings by reducing fill times down to 5 minutes. Consequently, when looking at a sprayer with a 1200-gallon tank and 120-foot boom, we see about 20% cost savings.
Praxidyn MixMate
The Praxidyn system allows users to automate loads. You can prepare loads the night before from your living room while watching TV or from an office chair. Send the loads to the operator in the field. No math needs to be done by the operator. The biggest change the operator would make to the load is regarding weed height. Upon arrival to the field, if the operator notices weed height on the order calls for six inches, and the weed height is actually 10 inches - the operator can make that adjustment to the order and the software will recalculate input quantities on the fly - no math is needed.
Another value-added feature to the MixMate system is the ability to track and record data. Through the cloud-based software, a user can record exactly how much product was applied to each field - and the exact time of the load or batch. This will continue to be ever-more important as regulations continue to tighten.
MixMate Fusion - New for 2019
We hope that you enjoyed this write-up on increasing sprayer efficiencies. Should you have any questions or feedback don't hesitate to get in touch with us at www.dultmeier.com!
If you have had your finger anywhere close to the agricultural market in the past few years you know it is somewhat depressed. Especially, since we hit highs for corn around $7/bu back in 2013. This was such a rapid incline in grain prices that it somewhat threw the markets out of balance. Anyone that has remotely studied markets is familiar with the pendulum effect. If a market swings drastically in one direction, it is bound to swing back just as hard - if not harder - in the opposite direction.
This market effect could be potentially unfolding before our eyes this summer. Heat waves around the world are driving the price of wheat higher. Europe and Asia are seeing abnormal heat, which is burning up the wheat crop on these geographical regions. While the United States has seen heat as well - it hasn't necessarily been in wheat country. We live in a tremendously global market environment. The prices we see daily, are affected by what happens across the pond and all over the world.
European & Asian Wheat Farmers
Therefore, the distress that European and Asian farmers are currently experiencing is positively impacting the US wheat farmer. Simple supply and demand is causing this increase in the wheat market. Because there is less supply going into the market place from our European and Asian competitors, their 2018 wheat crop is expected to be less than the forecast. Whenever there is a shortage in a market, the commodity begins to increase in price. The less you have of something the more valuable it becomes.
Russia, Ukraine, France, and Great Britain are all European countries which have wheat farmers that are being negatively impacted by the 2018 heat waves. On August 2nd, Chicago wheat futures hit three-year highs to around $5.50/bu (The Wall Street Journal).
A Look Back into History
Looking at an aggregate chart of wheat prices since 1960, we can see fairly large market clips occurring about every seven to ten years. On average, these pullbacks are about 50% down from the high. The most recent high was back in December of 2007 at just under $12/bu. We seem to have found a level of support at roughly $4/bu. Currently, we are sitting at a $5/bu.
Wheat Prices Since 1960, Source: www.macrotrends.net
Looking at historical trends it appears as though wheat prices are on the up-and-up. It seems that the market has found a much more agreeable level of support. I say 'agreeable' since one can clearly see the higher lows met with higher highs in 2016-2018. We did not see this back in 2010-2012 failed rally. The market wasn't ready to correct and thus we were sent into a further recession.
Now, it seems the market is posed to regain the losses from 2012. Where we have seen about a 57% clip in the price of wheat - to the low in August of 2016.
Sometimes markets require a little extra push or catalyst to take off. A shortage in supply can absolutely be that catalyst. The US is positioned well in the current global wheat market and pose to reap the rewards of healthy crops.
Is an Increase in Wheat Futures a Certainty?
Now, we must acknowledge the tariff war and how that could potentially affect US wheat farmers. China has imposed tariffs on American grain and oil-seed imports. If we could look at wheat prices in a vacuum, one would say the US wheat farmer is posed to prosper over the next few years. The global supply and demand issues we addressed above, along with the technical analysis of the chart presented above both suggest this is the case. However, trade wars generally don't impact the farm market in a beneficial manner. It's difficult to say what is going to happen but all things aside - wheat looks posed to make a run.
As always we hope you find this post to be informative and educational. You may ask yourself how Dultmeier Salescomes into play in the wheat market. We offer a wide product selection to help enable producers plant, fertilize, and protect their crops through herbicide/fungicide applications. Check out our Agricultural Division page here. Stop back soon!
Dultmeier Sales stocks valves of all different makes, models, and applications. Here you will find all you need to know about the different types of valves we stock and the various applications they are used for. More importantly, we will help you determine what you need to know prior to making a valve purchase. Let's dig in...
Valve Definition & Common Trade Names
What is a valve? What are some common trade names, associated with, the valves that Dultmeier Sales stocks and distributes? In a nutshell, a valve is a product which is used to constrict, cut off, redirect, or regulate the flow of a liquid or gas. While we do sell pneumatic valves we will be primarily focusing liquid, or solution, valves for this educational segment. Some common trade names associated with the valves we stock are as follows: butterfly, ball, gate, globe, angle, needle, solenoid, check, regulating, diverter, foot, relief, unloader, backflow prevention, and float valves.
As with any product, it's crucial to identify the type of valve, the manufacturer, inlet/outlet size, operating and maximum pressures, solution temperature, and the solution passing through the valve. It's critical to know what solution is passing through the valve to ensure proper chemical compatibility. Knowing the solution's PH level can also be another important factor when determining suitable components and materials.
How to Size a Valve
We size valves similar to how we size pipe. Always measure the inside diameter of the inlet/outlet port. This will identify the size of the valve in question. A common mistake is that people measure the outside diameter of the inlet/outlet ports of a valve. There is one exception to this rule - if working with tubing - measure the outside diameter of the tubing. For hose and pipe, only pay attention to the inside diameter measurement.
If flow rate is important, the coefficient of volume (Cv) of various valves can be compared. Now, I understand that sounds rather technical. However, in layman's terms all that means is the higher the Cv for a valve, the more flow rate will pass thru it with the same pressure loss. In the majority of applications, this will be a non-factor but it is still important terminology to be aware of in the vast world of valves.
Manufacturer Identification & Valve Type Explained
Most manufacturers will have a metal tag on their valve bodies to identify their brand. That manufacturer tag will identify the brand of the valve, the model, and serial number. This is an important first step in identifying what product you currently have. That being said, let's begin with a look at butterfly valves.
Butterfly Valves
Here at Dultmeier Sales, we stock a variety of butterfly valves. In the butterfly valve world, it's important to first determine which style of butterfly valve you possess. The two most common styles are Wafer or Lug bodies. A wafer-style butterfly valve has "thru" bolt holes that run along through the outside rim of both pipe flanges. In contrast, a lug-style butterfly valve has threaded bolt holes on both sides of the valve body to allow for "end of line" applications. Lug-style butterfly valves are, generally, less common than wafer-style butterfly valves. Below, you will see a wafer-style valve on the left and a lug style valve on the right:
Butterfly Valve Actuators
Next, we get into the topic of valve actuation. We primarily stock butterfly valves that are manually (seen above with handle) or pneumatically actuated with either double acting or spring return actuators. A double acting butterfly valve actuator requires air pressure to open the valve and then air pressure to close the valve.
A spring return butterfly actuator is used in fail-safe applications. If there is a loss of air pressure the valve will automatically close (or open) - due to the spring tension of the actuator. Spring return actuators are used in many production plants that require system flow to cease once power is cut or lost - as mentioned above, this is a fail-safe application example.
Electric Actuators are also used in many industries. While we don't stock electric actuators for butterfly valves - we have access to them. Actuators can also be provided with "positioners", limit switches and other controls.
We stock Butterfly Valves and Air Actuators from Keystone and Pratt.
Ball Valves
A ball valve is probably the most common type of valve that exists - across all industries. It gets its name due to the fact that it actually has an internal ball that sits in a "seat". When the handle or knob is turned 90 degrees from the inlet/outlet ports, the valve is closed and one can see the convex shape of the internal ball. When the handle is turned parallel with the inlet/outlet ports, the valve is open and one can view through it - unhindered.
On the left, below, is an example of an air actuated, stainless steel, female pipe thread, ball valve. While on the right, you will see a Banjo, polypropylene, manual, flanged, ball valve.
Standard Port vs. Full Port
By design, ball valves that are listed as Standard Port actually have less fluid path than the inlet/outlet ports size limitations - this is somewhat misleading to those that are unfamiliar with the concept of Standard vs. Full Port valves.
For example, if you have a 2 inch Standard Port valve your flow characteristics will be closer to that of a 1.5-inch fluid path. The technical reasoning behind this is the fact that a smaller opening creates more friction loss (i.e. pressure drop) thus resulting in a decreased flow rate. Standard port ball valves are cheaper than full port valves but restrict the system flow rates; somewhat. So, if flow rates don't matter or affect your system then you can save money up front by selecting standard port valve(s) for your plumbing system.
Full port valves allow the plumbing system to realize the full flow characteristics of the valving. If all valves in a system are two inch full port, valves then we can reasonably assume increased flow rates in comparison to a system that contains all standard port valving. A full port valve has a slight design change that allows for this increase in flow characteristics. While the valves may look the same externally, there are internal design changes that are not visible to the naked eye.
High Pressure vs. Low Pressure
This is another crucial step in determining the correct valve for a specific application. If necessary, place a pressure gauge at various points in the plumbing system to determine the system operating pressure. Never guess the operating pressure of a system. If a low pressure valve is installed into a high pressure system, serious or fatal injury could occur. As a general rule of thumb, anything below 150 psi is considered Low Pressure - that being said, there are valves rate for pressure less than 150 psi.
This gets back to one of our core fundamentals when selecting a proper valve - determine operating pressure and maximum pressure for the intended plumbing system.
Ball valves are a perfect example of how the same style valve can be used in multiple applications - both high pressure and low pressure. We have some ball valve product lines that have use applications which are limited to certain industries - due to their operating/working pressure limitations. However, we have many ball valve lines that carry over into multiple industry applications.
While we do carry many products that can be cross-utilized in various industries we always want the customer to confirm an operating pressure. This ensures safety in application and use. Furthermore, it minimizes the possibility of injury and lessens the chance of damage to the valve and other plumbing system components
Air Actuated & Electric Motor Driven
We carry ball valves that can be remotely operated via automation, as well. The most common types are pneumatic (air-operated) and electric motor-operated ball valves. Air operated are most widely used in chemical facilities, fertilizer plants, or industrial plants. Electric ball valves are most commonly used in agricultural applications for spraying applications. The trade name electric ball valve or pneumatic ball valve simply refers to how the valve is actuated.
When you drive down the road and see a large self-propelled sprayer, spraying in a field, you can be certain the booms are being remotely controlled. The boom valves are remotely controlled from the sprayer cab, with the help of electric ball valves. The sprayer operator sends a signal from his, in-cab, boom controller to turn certain sections of the sprayer boom on/off - based upon the field's specific application requirements.
We also see electric ball valves in the turf industry. Golf courses or residential sprayers will commonly use this type of ball valve on their sprayer setups. It is more prevalent in the turf industry due to the fact that the booms are much smaller than the agricultural industry.
Lastly, we do a fair amount of business in the liquid deicing industry. If you have ever seen a department of roads/transportation vehicle that is applying liquid before a winter storm - you have witnessed this industry in action. These vehicles are applying a solution called liquid salt brine (sodium chloride, magnesium or calcium chloride solution). Electric driven ball valves are common in this industry because pneumatic valve airlines would freeze in the frigid winter temperatures.
For those interested, here is a link that further explains the process of creating the salt brine solution. Below is a picture of a pneumatic-operated ball valve, on the left. On the right you will see an electric-operated ball valve.
Gate Valves
A flanged gate valve is used in larger flow applications. In the Dultmeier world, we most commonly see this style of valve used on large bulk fertilizer, fuel tank storage applications, and float storage tanks in the vehicle and fleet washing industry. Gate Valves are generally designed with a circular handle that is turned clockwise to close the valve and counter-clockwise to open the valve.
Just as any other valve, we need to confirm the solution that will be passing through the valve to ensure chemical compatibility and then confirm the working or operating pressures that are required by the plumbing system. Most commonly, we are supplying flanged gate valves for lower pressure ranges. Below is a picture of a common flanged gate valve used in the bulk fertilizer industry.
Globe & Angle Valves
A globe valve is very similar, from an external view, to that of a gate valve. However, when we look at the valves internally, they are quite different. As can be seen from the previous section, the gate valve operates almost like a wedge or slate that constricts or completely closes off flow. A globe valve has a different seat structure and more of a plunger that constricts or completely closes off flow. See below:
Below is a photo of a couple different sized globe valves on an Anhydrous Ammonia application. These valves are for a receiving bulkhead system where a plant facility will offload large bulk transports into their bulk storage tanks. The larger valve is on the liquid line transfer and the smaller valve is on the vapor transfer line.
In the Dultmeier Sales world, we most commonly use globe valves in the Anhydrous Ammonia industry. That is the same for angle valves. The most common application we see angle valves used in would be on toolbars or supply risers for Anhydrous Ammonia fertilizer applications. Continental Nh3 Products and Squibb Taylor are our two largest suppliers for these types of valves. An angle globe valve can be viewed below:
Needle Valves
Next up we will take a look into needle valves and the various applications they can be used for. Most commonly, we see these valves used in higher pressure applications such as car/truck wash and high-pressure cleaning. Here is a grouping of various needle valves on our website, to further illustrate the variety of options. That being said, we do sell a fair amount of needle valves in the Anhydrous Ammonia industry for a bleed off application.
As always, in any application we want to confirm the solution passing through the valve, working or operating pressure range, and temperature of the solution. Below you can view a picture of a needle valve.
Solenoid Valves
We carry a wide supply of solenoid valves from a number of suppliers. The most notable brands we offer are GC Valves, DEMA, KIP, Kingston and more. A solenoid valve is another example of an electric valve. However, they are drastically different than electric ball valves. That being said, solenoid valves can be controlled remotely and are used in a number of industries.
We most commonly use them in high-pressure vehicle or fleet washing applications, industrial applications, and agriculture or turf spraying applications. Some users in the agriculture industry are starting to migrate away from solenoid valves to ball valves - the primary reason being the necessity for the ruggedness of a ball valve versus over a solenoid valve. Mother Nature in combination with aggressive chemicals is an extremely harsh environment for a valve.
Normally Closed vs. Normally Open
This is an important topic to address - especially in the realm of solenoid valves. If a valve is "normally closed" it means that the valve is closed in its uncharged state. More simply put, if there is no electrical current passing through the valve coil then then it will remain closed. If a valve is "normally open", that means the valve is open in its uncharged state.
Various applications will call for either style. Coils in these valves can be 12 volt, 24 volt, 110 volt and even 240 volt, which allows for a wide and versatile range of applications.
For example, in the vehicle washing industry, we may want to have a weep application on a spray gun. We would do this to ensure the gun doesn't freeze shut in lower temperatures. Therefore, we want ambient water to continuously run through the system or spray gun - if a loss of power occurs. So, in this instance we would want to ensure a normally open valve be installed in this type of a plumbing system.
Solenoid valves are still highly used in the car/truck wash industries due to the fact that they are generally stored in temperature-controlled environments while limiting exposure to the harshness of the natural elements.
Check Valves
Next up, we will look into the world of check valves. This product is used to prevent backflow of a solution in a plumbing system. For instance, a check valve would be utilized when pumping a solution up a vertical pipe and you do not want the solution to backflow, due to gravity, when the pump is turned off. A check valve is a form of backflow prevention.
Furthermore, check valves keep a plumbing system charged. By keeping the system charged we can ensure more efficient delivery of product and reduce the number of air pockets that are present in the plumbing system, which reduces pump priming time and other potential pump problems. The more efficient a plumbing system is - the less it costs to keep it running.
Types of Check Valves
There are multiple types of check valves and each has its own benefits. We will briefly touch on the different types, here. First, is the most efficient type - in terms of maximizing flow characteristics. The swing check valve allows for maximum flow characteristics due to its design that reduces restrictions (i.e. a high coefficient of volume).
Regardless of the check valve style, we need to remember the cracking pressure. The cracking pressure determines the PSI at which the valve opens. Therefore, if a check valve has a cracking pressure of 2 psi it will not open until the plumbing system generates an operating fluid pressure greater than 2 psi. Below is a cross-cut section of a swing check valve:
Secondly, we have a ball check valve. This type of check valve has a preset mechanical spring that allows the valve to open based upon a pre-determined working pressure. These types of check valves are commonly used in high-pressure applications such as car and truck wash, but also within industrial and agricultural applications.
Lastly, there is a plunger style check valve. This style is pictured below:
Things to note when ordering a check valve:
Operating and maximum pressure requirements
Solution or product passing through the valve - check for chemical compatibility
A regulating valve can technically be any valve. In this sense, if you can constrict or control the flow by manipulating the opening threshold of the valve - you have just regulated the system flow.
To that note, we are going to look at this section with this one caveat in mind - a regulating valve needs to be remotely controlled. To do this, let's first look into electric motor driven valves.
There are certain types actuators of ball valves or butterfly valves that manipulate the flow rate of the solution by opening or closing the valve stem a to a certain degree. Without getting too technical this is done in conjunction with some type of flow monitor that is able to communicate with the valve actuator through a control mechanism.
This control mechanism can be a simple rate controller in a sprayer cab or as complex as a computer dashboard in a chemical production facility. The regulating valve communicates to the flow monitor through the system controller to reach and/or maintain the desired flow rate. This controller can be a simple rate controller or a complex computer system.
Regardless of the application - in order to remotely control a regulating valve we must have a controller that sends a signal to the valve based upon the desired flow rate of the operator.
As always, any application we want to confirm the solution passing through the valve, operating pressure range, and temperature of the solution.
Diverter Valves
A diverter valve functions very similarly to a remotely controlled regulating valve. The main difference between a regulating valve and a diverter valve lies within the functionality. A diverter valve is designed only to guide product flow through a system. Therefore, the most common example of this would be a three-way ball valve.
We look at this section with the same caveat in mind - a regulating valve needs to be remotely controlled. To do this, let's first look into electric motor driven valves.
The diverter valve would be remotely controlled through a similar mechanism as a regulating valve. The main difference is that the diverter valve "diverts" flow down fluid path A versus fluid path B - based upon the desired location sent by the controller or computer.
Foot Valves
Foot Valves are commonly used in transfer systems that require the pump to maintain it's prime. A foot valve is essentially a type of check valve. Foot valves are placed at the beginning of a suction line and are generally designed with some type of a strainer or screen to protect the plumbing system from sucking in foreign objects.
If you recall the design of the check valve, you will remember that a check valve closes when there is backflow pressure applied on the spring check. This forces the valve to close and keeps the system suction line primed, with liquid - thus increasing the overall efficiency of the plumbing system. The less time it takes to prime the pump the more efficient the plumbing system becomes. Below you can view a diagram of a plumbing system that includes a foot valve, with strainer.
Relief & Unloader Valves
Relief and unloader valves are commonly used in higher pressure situations with positive displacement pumps. These valves are used to protect system components from dead-head scenarios. A positive displacement pump will continue forcing product downstream in a plumbing system until there is a system failure such as a burst pipe, fitting, hose, etc. Thus, the term: dead head scenario. To help combat this scenario, relief and unloader valves were designed. Here is a diagram that explains a relief valve scenario
This video will explain the difference between the two styles of valves. As always, Cat Pumps does an amazing job explaining content.
Back Flow Preventers
In any wash down application where an operation has a water supply line connected to a public water source then it's absolutely necessary, by regulation, to have a back flow prevention valve in place. We distribute for Watts and commonly sell these units in vehicle/fleet wash applications, industrial applications and fertilizer/chemical facility applications. A backflow prevention system products the main water supply in the scenario where a local business would have a system failure and back up chemical, fertilizer, hazardous material, etc. into the main water supply - backflow prevention systems inhibit this scenario from taking place.
Below is an example of a Watts back flow preventer
Float Valves
Float valves are used in a wide array of applications. Virtually anywhere you need to maintain the level of a supply tank - you can leverage the assistance of a float valve. Some common float valve product lines that we distribute and carry include BOB Valves, Jobe Valves, Hydro Systems, Kerrick Valve, Dema, Walters Control, and Suttner.
Below is a Dema liquid level proportioning control unit with a siphon breaker.
Another application that is extremely common with float valves is in the cattle industry. We sell a unit that allows the user to tie into a warm water source to keep stock tanks from freezing closed in frigid temperatures. The Ice Bull Automatic Ice Prevention System is engineered to automatically open when the stock tank water temperature falls below 42 degrees Fahrenheit.
When the Ice Bull sensor valve opens, .20 gallons per minute of warmer water bypasses the float valve and flows into the tank through the discharge hose. Then, when the water temperature rises above 42 degrees Fahrenheit, the thermo valve shuts off. The Ice Bull Sensor is pictured below:
In Conclusion
We hope that this has been a helpful guide to valves. While not all valve types are listed in this post, you have certainly enhanced your general knowledge and should be better prepared to choose the correct valve for your desired application needs.
Don't forget to confirm in any application - the solution passing through the valve, operating pressure range, maximum pressure, and temperature of the solution and always confirm chemical compatibility.
As always, thanks for stopping by and come back soon.
Did you or your customers apply the product labeled as Resicore last season? Any issues with elastomers in pumps, seals, fittings, etc. failing? We had quite the troubleshooting experience with this product over the past 2017 season. Our partner, Dura Products, has invested a significant amount of resources to ensure this problem has been resolved. We feel confident in their findings and want to make sure that you are well informed when working with this product.
In the 2017 season we sold a significant amount of Dura Auto Batch Systems and ran into some seal failures at the two to four week operation period. Failure from a Dura Product after such a short amount of time is extremely rare and once Dura Products was notified they immediately went to work finding the culprit behind these seal failures.
Testing and Findings
After weeks of research and testing, Dura Products concluded that the product, Resicore, could be causing the findings. Resicore is a Dow AgroSciences product which is used as a corn herbicide and was widely used in 2017 - there are thoughts that more will be applied in 2018. Once we were able to identify a common theme across these product failures Dura Products began testing multiple elastomers to determine their longevity when completely immersed in the solution. Here are the compatibility recommendations from Dow AgroSciences Bulk Storage and Handling Guide:
The only materials that are acceptable for constant contact and greater longevity with the product Resicore include stainless steel, Teflon, ultra-high molecular weight polyethylene (UMHW), High & Low-Density Polypropylene and silicone rubber. Of all these options silicone is the only elastomer that was found to be acceptable for constant contact- over an extended period of time.
Furthermore, it was found that polypropylene, a common plastic used in pump housings and pipe fittings, is actually only moderately acceptable. Dura Products' research found that polypropylene only lasts about 175 days before deterioration is evident.
The Solution For Resicore Transfer
We want to ensure that your products operate when you need them to operate and that they operate in the manner they are designed to operate. Research that Dow AgroSciences has provided and silicone elastomers that Dura Products has developed helps us to ensure that your operation continues to run smoothly.
If you are handling Resicore in the future you must be aware of the recommended compatibility of the wetted materials of construction for Resicore are Stainless steel, Teflon, Ultra High Molecular Weight Polypropylene, High and low-density polypropylene. The ONLY elastomer that you should be using is silicone.
Below is a photo of a soak test conducted by Dura Products: Viton seal on the left and Silicone seals on the right.
Throughout Dura Products testing and experiments, it was concluded that silicone was the best-suited elastomer for constant contact with the product labeled Resicore.
As you can see, Resicore has compromised the integrity of the Viton elastomer. It has also slightly discolored the O-ring. These are both clear identifying qualities of a chemical compatibility issue. Given the same testing parameters, the silicone elastomer held up just fine - as it is compatible with Resicore. Here is another blog post that further explains the importance of doing your research and homework to ensure chemical compatibility.
Whenever questions arise due to chemical compatibility, it's absolutely necessary to consult the material handling guide of the product you are applying or handling. In this instance, when reading the handling guide - Dow AgroSciences specifically states that stainless steel is preferred when transferring the Resicore product. The Resicore handling guide specifies these materials below:
Stainless Steel, Glass Lined Steel or Epoxy coated carbon steel - OK Rating - Comment: Stainless Steel is preferred.
Silicone Rubber - OK Rating - Comment: Preferred Elastomer.
Polypropylene (High and Low Density), Teflon, Ultra High Molecular Weight Polypropylene - OK Rating - Comment: Good Resistance, High-Density Polypropylene preferred.
Viton, SBR - Caution Rating - Comment: May swell and soften moderately, may have a useful life for short time periods.
Mild Carbon Steel, Brass, Copper, Aluminum - NO Rating - Comment: Moderate to Severe corrosion due to the products low pH level.
PVC, ABS, Acetal, and Nylon - NO Rating - Comment: Disintegrates, embrittles or stress cracks.
Buna N, Neoprene, EPDM, and Hyplon - NO Rating - Comment: Severe swelling, softening or absorption.
In Conclusion
Always make sure that you consult the label of the product which you are applying and/or handling. Furthermore, we are happy to continually be a source knowledge such as this blog post. If this post was useful and relevant please, don't hesitate to share it with your friends and colleagues. Take care.
With the big shift in application products and techniques taking place in 2017, many of the foundational principles still remain in 2021. The biggest principle is to ensure that you "stay on label" when applying Dicamba products. Strict adherence to label instructions will help reduce liability greatly. We know that wind and humidity are major factors when selecting application day(s) and time(s). Now that the country has a few solid seasons of good spraying data, we can look back and use the data to help us continue to progress forward and improve applications.
One major change to the market place since this blog was posted back in October of 2017 is the Bayer-Monsanto merger. This merger has brought together two titans in the ag-chemical world and has further consolidated the marketplace. In the write up below there is some good information regarding application and snapshot in time of where we started out when not much was yet known with these products.
One thing is for certain - Dicamba is here to stay and we, as an industry, need to continue to stress the importance of training and proper application techniques. Firsthand experience tells us that these products, when applied correctly, smoke RoundUp Ready resistant weeds. Our farm on the Nebraska/Kansas border has much cleaner fields after having made the switch two seasons ago. But, Mother Nature always finds a way to survive....That begs the question - how long before we start to see Dicamba-resistant weeds?
Update 10/10/2024: Court rulings in 2024 have led to changes in what products are allowed. You can learn more here.
Dicamba Leading up to 2017 and In-Season 2017
Herbicide-resistant weeds have been expanding across the country for the better part of the past decade. Crop protection product companies such as Monsanto and Dow Chemical along with seed companies such as Syngenta have come up with multiple options to help combat these pestering weeds. The most promising solution appears to be within the Dicamba-resistant strains that were first made available for the 2017 season. Even before these seeds began appearing in fields in early 2017 there was a significant amount of skepticism.
Many people shared the sentiment that Dr. Kevin Bradley expressed at the Wisconsin Crop Production Association annual meeting in January 2017. Dr. Bradley stated, "There is no question the Dicamba option is coming, there's no question about it. But it's another question altogether whether we can steward this technology, and time will tell if that's true or not." He also pointed out the volatility of Dicamba and how finite amounts of this product could damage crops.
By the middle of 2017 states such as Missouri, Arkansas, and Tennessee had already received multiple complaints from growers of suspected Dicamba damage. It is estimated that more than 3.1 million U.S. acres have suffered from Dicamba-related crop damage (Crop Life: Special Report Managing Weed Resistance). Arkansas is actually on the verge of banning the application of Dicamba products - completely.
Even if it doesn't get banned it has been voiced that application restrictions will make it virtually impossible to actually apply the product. For example, if you can only spray the product with winds between 3-10 mph you don't have much of a window in the Midwest. We don't have too many days during spray season with winds between 3-10 mph. By the time you're able to actually spray (within regulations), it's too late because the weed plant is too far along to actually kill. This scenario is speculation, but is certainly a real possibility.
The Wall Street Journal reported that Monsanto actually sued the Arkansas State Plant Board in October. This came after the board's decision to ban Monsanto's new herbicide. Monsanto claims its herbicide is being held to an unfair standard. Arkansas has been the focal point of complaints with almost 900,000 acres of crop damage reported. It is noted that farmers in 25 states have submitted more than 2,700 claims to state agricultural agencies. The complaints share the common theme of neighbors' Dicamba spray drift and account for 3.6 million acres of total reported crop damage.
Dultmeier Insight from In-Field Observations
Our traveling sales representatives found evidence of Dicamba-related damage in a widespread area of our travels. The conventional beans that were affected appeared to be "cupped". The plants didn't canopy until later in the season - much later than normal. We will start to know how much of an impact this chemical had on yields as the combines get in the fields and begin to report yields. Some actually thought it could have a positive impact on yields since 2,4-D is a growth killer.
Some of the Dicamba products are derived from the chemical 2,4-D which basically grows a plant to death by oversupplying it with hormones. The thought process behind this theory is that if the plant pulls through the "cupping" stage and comes out of it, the farmer could actually see a yield bump. Again, that theory is yet to be proven...Below is an image of soybeans cupping due to Dicamba damage.
Even though many conventional fields were harmed there were much cleaner soybean fields this summer versus 2016 - at least in the areas we traveled. The conclusion being, it worked - for those fields that were Dicamba-resistant seeds. But we did see a number of conventional fields that looked awful. They looked awful from the perspective that the soybean plants were small and sickly looking. That being said - weeds were not present - so you can make the argument that the Dicamba did kill the weeds.
Drift is a major topic when the phrase "Dicamba" is brought up. We even had one customer in the Polk, NE area that mentioned they witnessed product from an applied field actually lift up and move to an adjacent field a week after it had been applied - an entire week later! You can ask the chemical companies and they will say that's not possible. The proof is in the pudding, folks - there are many instances similar to this over the past year. If we have learned any lesson, it's that these Dicamba products are extremely volatile and we must continue to educate, educate, educate.
Training and How Crucial It Is
There is a simple and basic rule to follow: The Label is the Law. If you are applying a product with a spray tip that is not on the label and you damage a neighbor's crops - you're liable. If you are running a spray tip that is on-label, but operating out of the required pressure range or spraying in too heavy of wind and damages a neighbor's crop - you're liable. The days of using one tip for every chemical applied are long gone. An applicator must be 100% certain they are operating within parameters specified on the product label.
Always consult your label if you have questions about what application products or techniques you should be using. For instance, a common theme is wind speed. Labels limit wind speeds between 3-10 mph on many of the Dicamba products.
It has been mentioned that during periods of high temperatures and high humidity vapor drift can readily be witnessed up to three days after application. Recall our example from Polk, NE and know that vapor drift from inversion has been documented outside that three-day window. What is inversion? Inversion takes place generally from 3 pm to 8 am the following day.
Generally, air near the ground is warmer while the air higher up away from the earth's surface is cooler. When an inversion takes place the opposite happens. Colder air is closer to the earth's surface and the warmer air is higher up - away from the earth's surface. This phenomenon can commonly be seen in the fall around harvest time - when soybeans are cut and the dust hangs in the air it can be reasonably assumed that an inversion is taking place. Tiny spray droplets will "hang" in the colder air and can float around on slight breezes.
Driftable fines of these Dicamba-based products have been found to drift miles from the application site. Due to this fact, the spray tips that are approved are those that create a larger and coarser droplet through air induction. Such as Teejet's Turbo Teejet Induction Nozzle.
There is a wide selection of approved tips from various manufacturers such as Wilger, Hypro, Teejet, and Greenleaf. Remember, always consult your specific product label to ensure the tips you are choosing from are actually approved - you need to be on-label to safely and responsibly apply these products. Furthermore, you can visit these chemical websites as additional resources: BASF - Engenia & Monsanto - XtendiMax.
Update 10/10/2024: Court rulings in 2024 have led to changes in what products are allowed. You can learn more here.
As of mid-October 2017, Monsanto has voluntarily proposed to offer further educational programs to ensure farmers have success with the Roundup Ready Xtend Crop System for the 2018 season. These updates include mandatory training, new recordkeeping requirements, and a Restricted Use Pesticide (RUP) designation. This will limit the sale and use to certified applicators or those acting under their supervision. All of these steps are supported by the Environmental Protection Agency (EPA). The new recordkeeping requirements will better track label compliance and help protect farmers using the Xtendimax system - as long as they follow the product accordingly - adhering to all label instructions.
Equipment Rinsing & Maintenance
Thorough clean-out is a must for any equipment used in Dicamba application. Applicators must keep the sprayer completely clean after Dicamba applications. Due to the volatility of the product if there is any residual left in the plumbing system of a sprayer it will be applied at the next application site and drift from there. Triple rinse with fresh water has become the industry standard. Check out this other blog post for rinse-out techniques and tips.
This triple rinse process includes the entire plumbing system - strainers, screens, dead spots in the booms, nozzles, valves, pumps, etc. Hypro has designed their Express Boom End Cap to aid in flushing booms. Similarly, Wilger has come up with their own design to fit CASE IH Patriot sprayers. Both of these products help eliminate dead space in the boom where residual chemical builds up and can cause headaches - major headaches when dealing with Dicamba products.
Furthermore, we have had a small handful of customers actually install chemical weighing systems solely for the dispensing and selling of Dicamba-products. This keeps the product completely and totally isolated from any others in their inventory to avoid contamination.
Moving Forward and What that Means for Dicamba
So what does all of this mean for the future of Dicamba-products and how widely used they will or will not become in the near future? One side can make the case that due to the number of claims and issues that were found this past season, more farmers will plant the Dicamba-resistant seeds in 2018 as nothing more than an insurance policy. After all, we did hear, in a number of instances, that growers actually planted the Dicamba-resistant seeds in 2017 solely as an insurance policy. They knew their neighbors would be spraying Dicamba and chose to use this method as an insurance policy.
The other side could argue that due to the widespread damage created by the conventional seed vs. Dicamba-resistant seed issues this past year we might not have any Dicamba-resistant seeds available for 2018 planting. Arkansas is leading the regulation wave here. They are about one step away from banning Dicamba-based products altogether, at the time of this writing. There are a handful of other states that are leaning in this same direction. However, there are times when the market will actually overtake regulation. Demand is a powerful force and we could see that process take effect very soon.
In my travels as a territory sales representative over the past four years, I have seen glyphosate-resistant weeds migrating north from central Kansas to central Nebraska - over 300 miles. Each year the soybean fields get dirtier and dirtier - and the number of dirty fields has been increasing - at an alarming pace. 2017 was the first year I actually noticed a number of fields that were "clean".
Weeds raise hell not only on crops, but on equipment as well. Some fields have gotten so bad that one cannot run a combine through them. They were just cut for silage. We heard of many instances where growers spent twice their normal budgeted amount on combating/controlling weeds in 2017.
When it gets to the point where you spray a field five times (I heard this nightmare more than once) and still cannot get a kill on the weeds - you need to do something different. A wise old man by the name of Albert Einstein once said, "Doing something over and over while expecting different results is the definition of insanity."
"The vast majority of farmers using our low-volatility Dicamba product have had tremendous success in 2017, both with on-target applications and good weed control," says Ty Vaughn, Monsanto's Global Regulatory Lead. "The product was extensively tested for volatility and other forms of off-target movement before it was made available to farmers this season. We are confident XtendiMax can continue to be used successfully in the System next season."
Mother Nature is forcing our hand and we need to adopt alternative methods to combat weeds. Say that Dicamba-based products are outlawed. It doesn't mean it will keep growers and producers in this country from finding a way to improve their yields and solve this weed issue. The market creates the demand and demand is a powerful force.
Evidence of Susceptible Crops Nearby (Date that this Review was Conducted)
Start and Finish Time of Application (include AM or PM)
Pre or Post Emergence Application - if Post Emergence Notate How Many Days After Planting
Air Temperature at Boom Height at Start and Stop Times
Wind Speed and Direction at Boom Height at Start and Stop Time
Tank Mix Partners - Including all Non-Pesticide Products. If Other Pesticides are Included, Records Must Show EPA Regulation Numbers for Each Product
Spray System Cleanout Procedure. At a Minimum, Records Must Indicate Spray System Was Clean Before Application was Made and What Cleanout Procedure was Used. Date of Cleanout is Required
Furthermore, each state may go above and beyond the requirements listed here so be sure to check your local state regulations BEFORE applying RUP products.
If you enjoyed this read, please, feel free to share with family, friends, and/or associates. Be safe out there.
As winter approaches, it's essential to prepare your sprayer for the colder months ahead. Properly rinsing and winterizing your sprayer not only extends its lifespan but also ensures it will be ready for use when spring arrives. In this guide, we'll walk you through the necessary steps to rinse out your sprayer, protect key components, and prevent freeze damage.
Step-by-Step of How to Properly Winterize a Spray Unit
In order to begin you need to ensure that your entire system has been evacuated of the solution(s) you were spraying with the unit. That means you need to evacuate the pump housing, hoses, strainers, tank(s), spray wands, etc. Start at the tank and run through the entire plumbing system - no component of the system that comes in contact with liquid should be left out of this process. If something is neglected, odds are good that you will have issues when you go to start up next season. Let's avoid that at all costs. Here's how....
Rinsing Your Sprayer
Any system should be thoroughly flushed with clean water. Industry standards recommend a triple rinse. Add one-half tank of fresh water and flush all tanks, lines, booms, nozzles, wands, etc. for no less than fifteen minutes. Do this using a combination of agitation and spraying. Remember that rinsates(the solution you create while flushing your system) do contain residuals from your system. Therefore, any pesticides, herbicides, fungicides, etc. that you were spraying will be flushed from the system out of your orifice(s). Do not allow rinsates to flow into streams, rivers, ponds, lakes, floor drains, sewers, or sinks.
It's best practice to use containment pads such as these to collect rinsates and then apply them to labeled sites at or below labeled rates. If possible, consider rinsing the system at the application site. Furthermore, the product label should specify best rinse practices - always consult the product label. Lastly, proper protective clothing should be worn to avoid chemical contact with any exposed skin.
Remember, many of the chemicals out there are designed to kill living organisms - that means it's not good to get it into your bloodstream. If you do get any product on exposed skin make sure to wash the contaminated area with soap and water immediately, for no less than 15 minutes.
Flush Out Sprayer Components
This is also a good time to clean strainers of any debris that was picked up during the past season. By performing this task you will help ensure that you don't starve your pump and blow out seals when you start up next season. Here is another post on pump cavitation to further explain how detrimental this can be. Sloppy clean-up practices are a main cause of equipment failure or malfunctions. You're here to prevent that and avoid expensive downtime.
You can create a cleaning solution by doing the following:
Fill the tank with fresh water and the recommended cleaning solutions or tank cleaner.
Agitate this solution for no less than 15 minutes.
Add one of the following to 50 gallons of fresh water.
Two quarts of household ammonia (let sit in sprayer overnight for herbicides such as 2,4-D or Dicamba. It's recommended to consult your label for recommended cleaning agents*)
Or add four pounds of trisodium phosphate cleaner detergent. (It's recommended to consult your label for recommended cleaning agents*)
Operate spray booms or wands long enough to ensure all lines and orifices are filled with the cleaning solution.
Let the solution stand in the system for no less than three hours.
Agitate and spray the solution onto suitable areas for rinsate solution.
Add more fresh water and rinse the system again by using a combination of agitation and spraying.
Remove strainers, screens, regulators, etc. and clean in a separate bucket of your cleaning solution.
Rinse and flush the system again with fresh water.
Don't neglect the fact that, any product left in the plumbing system, that is allowed to dry, is much more difficult to remove and will eventually build up enough to plug lines and orifices. Plugged lines and orifices not only decrease the overall efficiency of your plumbing system, but will bring about a slough of other headaches. Always wash down the external portion of the spray unit at the wash site, as well. This helps to remove any external residue that the unit collected via spills or drift.
Making Sprayer & Sprayer Pump Repairs
Next, let's move on to the pump itself. Remove the pump from the drive unit - generally on most skid sprayers this will be a gas engine. It's always best practice to take the pump completely apart BEFORE you order repair parts. For instance, you may order a complete overhaul kit and find that you really only needed to replace some gaskets. We strongly recommend to get the pump opened up and thoroughly inspect it.
Once you have completed this and have drawn up your parts list - only then should you order repair components. We have an extensive parts breakdown file, to help you identify the correct parts you need. In order to use this resource you need to know the manufacturer, pump type, and model number. Click here for access to our Parts Resources. For additional resource videos see below.
Hypro 7560 roller pump Repair Video:
Hypro D403/AR403 Pump Repair Video:
Prep Sprayer For Storage
If you absolutely need to store your unit outdoors over the winter make sure to remove all hose and any polymer (plastic fittings, connections, etc.) Some companies recommend adding lightweight oil such as diesel fuel or kerosene to a system for off-season storage. We don't recommend this as oil-based products don't like EPDM elastomers. For this reason, we suggest using a 50/50 mix of RV antifreeze and water. We recommend this treatment for your entire plumbing system - whether you store your unit indoors or outdoors.
The reason we recommend this treatment is based on experience. We have had customers store units in temperature-controlled environments, during the off-season, only to have their heat source fail. This resulted in the pump housing cracking due to their own negligence. If they had charged the system with a solution that would not freeze they could have avoided an expensive surprise come spring.
Here is another post on chemical compatibility and how it's worthwhile to perform due diligence. Run this solution throughout the entire plumbing system for a minute or two in order to ensure that your total system is winterized and safe from freezing.
It's also recommended to remove all gauges and store them indoors if possible. Change out your oil if you are running a diaphragm pump unit - this ensures you are ready to rock-n-roll come go-time next spring. Remember, the main reason for failure or malfunction in any spray system is neglect and improper maintenance. Lastly, make sure to replace air/oil filters on your gas engine. Don't forget to add a fuel stabilizer treatment to your engine and run it for a few minutes to ensure the treatment reaches all internals of the engine.
Before You Go
If you can ensure following these steps in your post-season shutdown process we know you will be in much better shape come next season. All of your equipment should be good to go and ready when you - and more importantly - your customers need it to be. Thanks for stopping by and have a great off-season.
Sources:
Some of the information in this post was found through The University of Nebraska-Lincoln the Cleaning Pesticide Application Equipment publication from August 2013.
The fall/spring application of the fertilizer Anhydrous Ammonia, also known as NH3, is always a hectic time for those in the agricultural industry. The race to get the precious fertilizer in the ground is fast-paced and everyone is running like gangbusters. Every season fall/spring we field phone calls that stem from concern due to the reliability and service of ammonia hoses.
This post should clear up many questions and will provide some valuable education to you and your team. Below you will find a listing of common questions we run across throughout a season. As always, we are happy to help share our wealth of technical knowledge and experience.
Common Anhydrous (NH3) Hose Questions
Residue on NH3 Hose Exteriors
Question: At times a residue forms rings or cones all over the cover of my anhydrous ammonia hose. This residue resembles or looks like white spots.
What causes this residue to appear and what is it?
Answer: Anhydrous ammonia hoses are designed to allow a small amount of gas through the wall of the hose. This is known as pinpricking and it is a safety requirement. This allows trace amounts of NH3, to permeate through the tube. The pinpricks allow minute amounts of anhydrous ammonia to easily escape into the atmosphere through the hose cover. There is such a trace amount of anhydrous ammonia being released that it is not harmful.
A hose that has been improperly pricked will cause the cover to blister and eventually blow out - this is the same for a hose that has not been pricked at all. A hose blows out when NH3 becomes trapped between the layers in the hose, heats up, and vaporizes - thus causing rapid expansion and bursting through the hose cover.
The single drawback to pin pricking is the residue that is left on the hose and the resulting appearance that the hose is somehow defective, after use. Remember, as the anhydrous ammonia escapes through the pinpricks it comes in contact with the atmosphere and forms the white residue that many operators commonly see throughout the season. The color and consistency of the residue are affected by the amount of dust and relative humidity present in the atmosphere.
This residue does not indicate a defective hose and in no way should be viewed as a problem or unsafe situation for operators. Furthermore, it is a reminder of this built-in safety feature of the anhydrous ammonia hose and that it is, in fact, working as intended.
NH3 Hose Basketing
Question: My stainless steel braided anhydrous ammonia hose has ballooned out behind the coupling.
Why is this happening?
Answer: The symptom described above is referred to as "basketing". Basketing is the result of the thermal expansion of trapped anhydrous ammonia in the hose. By design, the hose is intended to expand in a controlled fashion when this over-pressurization occurs. Most commonly, a user will see basketing form behind the coupling - this intended consequence is meant to keep the NH3 hose from a catastrophic blowout.
Thermal expansion generally occurs when anhydrous ammonia remains or leaks out of a shut-in hose assembly and is allowed to heat up or "cook" in the sun. Extremely high pressures occur, internally, as the black hose is exposed to sunlight for extended periods.
It is highly recommended that all hose assemblies be emptied before storage and downstream valves are checked for compliance and acceptable operation regularly. Furthermore, hydrostatic relief valves should also be checked for correct operation and compliance pressures depending on state and local fire marshal requirements.
Anhydrous Ammonia Expected Service Life
Question: What is the expected service life of an anhydrous ammonia hose?
Answer: Factory-assembled NH3 hose assemblies come in three variations that each have a different service life. Each type is labeled with a removal date. Here is the life span for the different ammonia hose assemblies that we carry at Dultmeier:
Goodall New Hose Expected Service Life - When Coupled by Authorized Goodall Locations:
Recommended Anhydrous Ammonia hose maintenance and care instructions:
New Hose
Ensure you have the correct hose. All Anhydrous Ammonia (NH3) hose will be strip branded, stating that the hose is for Anhydrous Ammonia, the working pressure, the name of the manufacturer, and the month and year the hose was made.
Make sure the couplings are properly put on. After the hose is charged with anhydrous ammonia, check that the couplings are secure and that they have not moved.
Ensure that the new hose is free from cuts, gouges, and imperfections. Perform a visual check of each hose in service. Run your hand down the length of the anhydrous ammonia hose, checking for soft spots.
Never secure the coupling in a vise when attaching valves.
Goodall highly recommends that all relief valves be replaced at the same time a new hose is installed.
If any of the above imperfections are found to be existent, remove the hose from service immediately.
Used Hose
An anhydrous ammonia hose that is currently in service or has been carried over from the previous year:
Applicators should remove anhydrous ammonia hoses from the nurse tank(s) before winter and store in a cool, dry place. Keep away from direct heat and any motors that are operating. The best place to store an anhydrous ammonia hose is to hang the hose in a vertical position from the shoulder of the coupling. By doing this one relieves stress on the hose. The hose will be out of the way so as not to be damaged by individuals walking on it, trucks driving over it, or anything being piled on top of it. Furthermore, the storage of anhydrous ammonia hoses indoors prevents damaging UV rays from the sun ruining the hose.
NH3 hoses should be checked in the spring in the same manner as a new hose is inspected - this way the user ensures that an Anhydrous Ammonia hose is, in fact, an Anhydrous Ammonia hose.
Each hose should be checked at least daily, if not each time the hose is used, to ensure proper function. Make sure to check for movement of couplings, cuts, gouges, or cracks in the cover. Check for any soft spots - this is done by running your hand down the entire length of the hose.
Should any of the above imperfections in an anhydrous ammonia hose be found, immediately remove the hose from service.
Always remember - visual and manual inspections SHOULD BE DONE DAILY.
Don't hesitate to contact us should you have any questions. Be safe out there...
Ever wondered why some anhydrous nurse tanks empty faster than others, or why your flow rates seem to fluctuate without warning? The secret lies in understanding the nuances of liquid withdrawal tank valves and the plumbing from nurse trailer to the tool bar affects the flow of anhydrous ammonia. In this post, we'll uncover the factors that alter these flow rates and reveal tips that can help you boost your efficiency.
Understanding Characteristics of Anhydrous Ammonia
Anhydrous Ammonia or more commonly known as Nh3 is a common fertilizer that provides a wonderful supply of Nitrogen to crops. First and foremost, let's get some basics down on this fertilizer. In its natural state, Nh3 is a gas. When pressurized, the anhydrous ammonia converts to liquid form. By pressurizing a vessel such as a nurse tank we can transport the nitrogen rich fertilizer from a bulk storage facility to the field. Because anhydrous ammonia is a gas, in its natural state, it wants to return to that state. Therefore, any pressure drop in a plumbing system allows the liquid to vaporize.
Once Nh3 vaporizes the plumbing system becomes exponentially less efficient and, therefore, you as an applicator become less efficient. Bottom line - if you have a poor or inefficient plumbing system you will spend more time in the field. Because you have to run your tractor at slower speeds in order to apply the same amount of Nh3. The longer we are able to keep the anhydrous ammonia in liquid form, the less product we lose to the atmosphere as it exits a knife orifice.
Testing Nurse Tank Valves
Now that we have covered a little background information on Nh3 let's discuss liquid withdrawal nurse tank valves. Nurse tank valves may be rated the same, but they are NOT built the same. Take it from Judd Stretcher with Continental Nh3 Products. Judd insists on nothing but top notch quality for the products that Continental turns out. If you could achieve 20% greater tractor speeds by simply changing out your nurse tank valves, would you? Let's look at a scenario from a recent field test that Continental Nh3 Products performed.
Continental lined up their B-1206E, B1206-F, A1406-F, A1406-FBV and A1507-F against some of the top names in industry. What Continental found was staggering. Through standard plumbing equipment, 1-1/4" hose, break away and 1-3/4" acme fittings and a single Continental 30GPM Heat Exchanger Judd was able to prove that quality and efficiency really do pay off.
NH3 Withdrawl Valve Flow Ratings Explained
Before we continue, let's clarify the ratings on valves. If a liquid withdrawal valve is rated to 42 gallons per minute (GPM), like the B-1206-E or F you MUST understand that this is not the product flow rate of the valve. A valve "rating" in the Nh3 world actually identifies the flow rate at which the excess flow check will engage. This is another safety feature mandated in the anhydrous ammonia world. A valve rated to 42 GPM will close and not allow product to flow from the nurse vessel if the flow rate EXCEEDS 42 GPM.
This is designed to protect the operator if there is a catastrophic release - such as a hose failure. The nurse vessel will remain sealed due to the excess flow check. By having this excess flow check in place we don't allow the tank to completely evacuate - thus protecting the operator. So, a valve that is rated to 42 GPM, by industry standards, will actually flow around 24 GPM of product through standard plumbing equipment listed above. In regards to this specific field test, we are concerned with product flow rates.
Continental was able to find that their valves actually outperformed the competition by 10-20 percent. Their valves are able to achieve this due to design and quality. Even a one to two PSI drop at the nurse tank valve can allow for a drastic expansion of product which then allows the Nh3 to vaporize.
The more vapor you put into a heat exchanger the less efficient the heat exchanger, or cooler, is and that ultimately leads to less product going in the ground. Which finally boils down to you spending more time in the field. I will ask the question again, if you can increase your tractor speed by 10-20%, because you have improved the efficiency of your plumbing system, would you?
Money in Your Pocket
Let's look at a basic calculation for Nh3 application: If you are applying 200lbs/acre of Nh3 running 5 mph across a tool bar 55 feet wide you will need a system that can flow 27 GPM as you will be applying 1620 gallons per hour. So if the price of anhydrous ammonia is projected to retail for $350/ton in eastern Nebraska this fall. An application rate of 27 GPM. Means that you are spending $1560/hr (math calculations below). You could theoretically save $312/hr from increasing your plumbing efficiency by 20%. And that, you can take to the bank - calculate that over a 10 hour day and you're looking at savings of roughly $3,118/day. Put that number across an entire season and think what you could do with those savings! If you have further questions check us out at here or give us a shout at 1-800-228-9666.
Math Calculations:
8910lbs/2000lbs = 4.455 tons*$350 = $1559.25/hr - total expenditure on Nh3/hr
(Nh3 weighs 5.5lbs/gal so 1620 gallons = 8910lbs; then 8910lbs * .20 = 1782lbs/hr saved which = $312/hr.
*At the time of writing this Nh3 projections for fall in eastern Nebraska are around $350 retail. Nationwide average is approximately $300/ton.
If you found this post useful feel free to share with friends, family, and colleagues. We are here to help and share our knowledge. If you have further questions don't hesitate to contact us. Thanks for stopping by and take care!
Properly sizing a centrifugal pump is a crucial step in any plumbing system. There are some important variables and qualifiers you need to first identify in order to ensure that your plumbing system(s) reaches the desired output flow rates. Centrifugal pumps fall into a category of their own and need to be sized for various applications in a different manner than other pump families. In this post you will learn some basic steps to help you properly size a centrifugal pump for your application.
The Basics
Many pump users mistakenly think that a centrifugal pump will provide its maximum published flow rate in all applications.
However, unlike positive displacement pumps (gear, roller, diaphragm and others), the flow rate from a centrifugal pump will vary significantly depending upon the details of the suction and discharge piping and other "head losses" in the user's system(restrictions to flow such as elbows, tees, reducers, strainers, meters, valves, etc)and the vertical rise (or drop) from the supply source to the discharge point.
Total Static Head
The total vertical rise in the system is commonly referred to as Total Static Head. Total Static Head consists of both Static Suction Head and Static Discharge Head, and each of these can be positive or negative, depending if the supply source and discharge point are located above or below the pump elevation. Also note that some systems have a pressurized supply and/or discharge point (pressure vessel or pressurized pipe); these will also add to the Total Static Head.
Once calculated, static head doesn't change for a system - unless a plumbing change is made.
If that sounded a little technical it's because it is! Long story short - your centrifugal pump doesn't dictate your flow rate - your plumbing system does.
Think of it this way - the speedometer on your car may say 160mph, but is your car capable of that speed? What if you put on larger mud tires or constrict the exhaust? The car certainly will not reach 160mph - and a centrifugal pump operates under this same premise. Now, back to today's lesson:
Total Dynamic Head
In addition, each system has a Total Dynamic Head(TDH) which is the sum of head losses due to friction through each foot of pipe, all fittings, valves, meters, strainers, etc. The reason these frictional head losses are called "dynamic" is that they vary with the flow rate moving through the system. As the desired flow rate goes up, the Total Dynamic Head goes up, and usually quite quickly.
The Total Head in a pumping/piping system is the sum of Total Static Head and Total Dynamic Head. A "System Curve" can be computed, for a variety of desired flow rates, and plotted against the particular "Pump Curve". The Centrifugal Pump Curve is published by the pump manufacturer.
The "Operating Point" (Gallons Per Minute Flow rate) of the pump, in a particular system, is at the intersection of the Centrifugal Pump Curve and the Plumbing System Curve.
If this sounds complicated, do not be concerned. Dultmeier Sales has experienced engineers on staff, along with pump flow computer programs, to properly compute and size centrifugal pumps for your applications.
Simply give our engineering department a call with your flow rate requirements and some basic details on your piping system, and we will properly size your centrifugal pump to meet your requirements. You may wish to check out our Technical Library, as well. Let us know if there is any other way we can be of service.
Looking for that perfect fuel transfer pump unit? Look no further. We assemble these units in Omaha, Nebraska in our production facility. These fuel transfer pump units are available in either 1" transfer or 1.5" transfer capacity - flow characteristics vary drastically between the two versions.
The Dilemma & Our Solution for You
The 1" fuel transfer pump unit (DUFPU1P) will produce a flow rate of 32 GPM - at the nozzle. This is a true representation of the flow rate that the end user can expect - at the end of the plumbing system. While competitive systems will notate "max flow rate", many of them are portraying the flow rate the fuel transfer pump outputs at an open discharge. Open discharge means unrestricted flow and isn't an accurate representation of what an end user will experience, in terms of flow rate at the nozzle, once the fuel transfer pump is installed into a plumbing system. Here is a quick example of how friction loss is calculated through a plumbing system to determine flow rate - at the nozzle.
Our 1.5" fuel transfer pump unit will produce a flow rate of 60 GPM - at the nozzle. Most 12V diesel fuel transfer pumps will produce a flow rate of approximately 18-20 GPM at the nozzle. This is making the assumption the plumbing system consists of approximately 30 feet of 1" fuel transfer hose.
By making the transition from lower volume 12 Volt or 115 Volt fuel transfer pumps to the 1" DUFPU1P, end users can effectively decrease their fill times by 78%. If you choose to bump up to the, larger, DUFPU1.5P you can decrease fill times by 233%.
That is a serious cost savings when looking at the operational expenses of paying operators to wait around while large equipment fuel tanks are being filled. If you are able to save 15 minutes of fill time, per fill, how much money does that save you in a week? How about a month or a year?
Reduce waste, reduce cost, and increase efficiencies of your operation. Bigger, faster, stronger is the name of the game and these Dultmeier fuel transfer pump units will help you achieve that status.
Either fuel pump transfer unit option, that we manufacture, is fitted with the MP Pumps PetrolMaxx 2" self priming diesel fuel transfer pump. These fuel pump transfer units are designed to safely handle diesel or bio-diesel fuels and significantly reduce operating expenses and improve the efficiency of your operation.
Product Demonstration
Our, larger volume, DUFPU1.5P boasts the following features:
CRX 6.5 HP manual start engine with C.A.R.B. rating.
MP PetrolMaxx 2" self-priming cast iron pump with Type 21 Viton® mechanical seal designed for diesel fuel